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Introduction

1. What is cavitating venturi?
2. Use of cavitating venturi
3. Past work

• Experimental
• Analytical

4. Present Contribution
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What is cavitating venturi ?

A venturi operating with a throat pressure 
equal to the vapor pressure of the fluid 
corresponding to the temperature is 
called a ‘cavitating venturi’
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Use of cavitating venturi

• Propellant flow and mixture ratio in the combustion 
chamber is controlled by cavitating venturi

• It maintains constant propellant flowrate for fixed inlet 
conditions (pressure and temperature) and wide 
range of outlet pressure

• During ignition, it maintains constant flowrate while 
pressure is building from ambient condition

• At steady-state condition, it maintains constant 
flowrate while pressure fluctuates due combustion 
oscillation 
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Past Work 
(Experimental)

Randall (1951) – Journal of 
American Society
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Past Work (Analytical)

( )pgAC satctd
pm −=
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• Flowrate through cavitating venturi is 
calculated from the following equation:

• There has been no published 
reference of an effort to model 
cavitating venturi by CFD or network 
analysis methods

• Modeling of phase change and two-
phase flow are required to compute flow 
through cavitating venturi 
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Present Contribution

• Finite volume model (FVM) of cavitating venturi using 
Generalized Fluid System Simulation Program 
(GFSSP) (http://eodd.msfc.nasa.gov/GFSSP/)

• FVM solves for mass, momentum and energy 
conservation equations in venturi

• Numerical predictions of cavitations at the throat
• Predictions of choked flow of liquid when it cavitates 
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2. Flow Characteristics

• Pressure decreases in the 
converging section and increases 
in the diverging section

• With decrease of downstream 
pressure, pressure at throat 
reaches vapor pressure (Incipient 
cavitations)

• With further reduction of 
downstream pressure, two phase 
condition extends (Cavitating flow)

• Vapor bubble collapses further 
downstream and flow becomes 
single phase 
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3. Numerical Model

• Governing Equations in Finite  
Volume Scheme

• Solution of Governing Equations

• Generalized Fluid System Simulation 
Program (GFSSP)
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GOVERNING EQUATIONS
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Note :  Pressure does not appear explicitly 
in Mass Conservation Equation although  it 
is earmarked for calculating pressures
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MOMENTUM CONSERVATION EQUATION
GOVERNING EQUATIONS
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• Represents Newton’s Second Law of Motion
Mass X Acceleration     =      Forces

• Unsteady

• Longitudinal Inertia

• Transverse Inertia

• Pressure

• Gravity

• Friction

• Centrifugal

• Shear Stress

• Moving Boundary

• Normal Stress

• External Force
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MOMENTUM CONSERVATION EQUATION
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ENERGY CONSERVATION EQUATION
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GOVERNING EQUATIONS

i
Q

Enthalpy Equation

Rate of Increase of Internal Energy = 

Enthalpy Inflow - Enthalpy Outflow + Heat Source

• Based on Upwind Scheme
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GOVERNING EQUATIONS
EQUATION OF STATE

For unsteady flow, resident mass in a control volume is calculated 

from the equation of state for a real fluid

RTz
pVm=

Z is the compressibility factor determined from

higher order equation of state
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GOVERNING EQUATIONS
EQUATION OF STATE

• GFSSP uses two separate Thermodynamic Property Packages 

GASP/WASP and GASPAK

• GASP/WASP uses modified Benedict, Webb & Rubin (BWR)

Equation of State

• GASPAK uses “standard reference” equation from

• National Institute of Standards and Technology (NIST)
• International Union of Pure & Applied Chemistry (IUPAC)

• National Standard Reference Data Service of the USSR
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SOLUTION PROCEDURE

• Non linear Algebraic Equations are solved by
– Successive Substitution
– Newton-Raphson

• GFSSP uses a Hybrid Method
– SASS ( Simultaneous Adjustment with Successive 

Substitution)
– This method is a combination of Successive Substitution and 

Newton-Raphson
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GFSSP Solution Scheme

Mass Momentum

Energy

Specie

State

Simultaneous

Successive Substitution

SASS : Simultaneous Adjustment 
with Successive Substitution

Approach : Solve simultaneously 
when equations are strongly coupled 
and non-linear

Advantage : Superior convergence 
characteristics with affordable 
computer memory
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GFSSP PROCESS FLOW DIAGRAM
Solver & Property 

Module

• Command line preprocessor

• Visual preprocessor 

Preprocessor

Input Data

File

• Time dependent  

process

• non-linear boundary

conditions

• External source term

• Customized output

• New resistance / fluid 

option

Output Data File

• Equation Generator

• Equation Solver

• Fluid Property Program

User Subroutines

New Physics
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4. Results

1. Finite Volume Discretization of Venturi
2. Pressure Distribution
3. Density Distribution
4. Compressibility Factor
5. “Choked” Flowrate
6. Comparison with Bernoulli model
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Nozzle Geometry
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Pressure Distribution in Cavitating Venturi 
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Density Distribution in a Cavitating Venturi
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Compressibility factor distribution in a Cavitating Venturi
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Effect of Inlet Pressure on Flowrate
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Comparison of Predicted Choked Flowrate with 
Bernoulli Model (Fluid : Hydrogen)

PINLET 
(PSIA) 

TINLET  
(R) 

PSAT 
(PSIA)

ρINLET 
(LBM/FT3) 

ATHROAT 
(IN2) 

MDOT 
(GFSSP) 

(LB/S) 

CD MDOT 
(BERNOULLI) 

(LB/S) 
413 46.3 55.28 4.265 0.0113 0.243 0.9 0.266 
601 46.3 55.28 4.378 0.0113 0.302 0.9 0.332 
977 46.3 55.28 4.56 0.0113 0.372 0.9 0.441 
1381 46.3 55.28 4.715 0.0113 0.433 0.9 0.537 
 

Discrepancies in flowrate are due to constant density 
assumption in Bernoulli model
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Conclusions

• Cavitating flow in venturi can be predicted by solving 
conservation equations of mass, momentum and 
energy conservation equations in conjunction with 
thermodynamic equation of state

• Bernoulli model overpredicts the flowrate due to 
constant density assumption

• Rapid drop in compressibility indicates that sound 
velocity drops significantly at throat which may be the 
reason for occurrence of choked flow at low velocity
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